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STATIC AERODYNAMIC CHAMCTERISTICS O F  A ROCKET VEHICLE W I T H  THICK 

WEDGE FINS WITH SWEFTBACK LEADING AND TRAILING EDGES 

by Joseph A. Yuska 

L e w i s  Research Center 

SUMMARY 

The longi tudinal  s t a t i c  s t a b i l i t y  charac te r i s t ics  of three one-f i f th  scale  
models of t h e  second s tage of a sounding rocket were calculated and compared 
with the  measured values a t  Mach numbers of 1 .79  t o  3.47. All three models had 
f i n s  of t rapezoidal  planform w i t h  sweptback leading and t r a i l i n g  edges, s m a l l  
aspect r a t i o ,  and th ick  wedge sections,  but  d i f fe red  i n  f i n  area and overa l l  
model length. Calculations of center of pressure and normal-force coef f ic ien t  
slope a t  zero normal force were i n  good agreement with experimental data. 

INTRODUCTION 

During the aerodynamic design of a two-stage sounding rocket having a long 
payload compartment, it w a s  found necessary t o  propose the  use of f i n s  having a 
t rapezoidal  planform with sweptback leading and t r a i l i n g  edges, small aspect 
r a t i o ,  and a th ick  wedge sect ion t o  obtain adequate s t a t i c  s t a b i l i t y  of t h e  
second stage a t  high supersonic speeds. 

A general method ( r e f .  1) f o r  calculat ing the  normal-force slope coef f i -  
c ien t  and the center of pressure f o r  a wing-body combination i s  wel l  estab- 
l ished, bu t  the  authors s t a t e  t h a t  t h e  method i s  r e s t r i c t e d  t o  configurations 
having t r a i l i n g  edges tha t  a re  not swept back and a l s o  t h a t  sane successful pre- 
liminary correlat ions between data  and estimates by t h e i r  method have been made 
for configurations having t r a i l i n g  edges that  a r e  not swept back. A l i t e r a t u r e  
search revealed l i t t l e  addi t ional  spec i f ic  information or data  a t  supersonic 
Mach numbers on wing-body combinations having f i n s  similar t o  the  proposed 
sounding rocket configuration. Therefore, it w a s  desired t o  determine i f  t h e  
supersonic longi tudinal  s t a t i c  s t a b i l i t y  c h a r a c t e r i s t i c s  of t h e  proposed sound- 
ing rocket could be calculated successful ly  by using t h e  method of reference 1 
and accounting for  the  increased l i f t  of the  wedge sect ion by including the  
wedge effect iveness  f a c t o r  as described i n  reference 2. 

Three one-f i f th  sca le  models of the rocket were t e s t e d  between Mach num- 



bers  of 1.79 and 3.47 i n  t h e  L e w i s  10- by 10-foot and 8- by 6-foot supersonic 
wind tunnels. The t e s t  data  were compared t o  r e s u l t s  of s t a t i c  s t a b i l i t y  ca l -  
culat ions by t h e  method mentioned previously. 

SYMBOLS 

axial-force coef f ic ien t ,  a x i a l  force/qS 

pitching-moment coef f ic ien t ,  pi tching moment/qSd, measured about base of 

pitching-moment coef f ic ien t  slope a t  zero normal force,  &M/& 

model 

radian 
per 

normal-force coef f ic ien t ,  normal force/qS 

normal-force coef f ic ien t  slope a t  zero normal force,  &,/a, 
reference length,  body diameter, 0.5 f t  

distance from s t a t i o n  0 t o  model base, ft  

free-stream Mach number 

dynamic pressure,  lb/sq f t  

reference area,  cross-sect ional  body area,  0.1964 sq f t  

center of pressure a t  zero normal force,  measured from s t a t i o n  0, 

per radian 

ca l ibe r s  

angle of a t tack ,  deg 

APPARATUS AND PRO(;'EDURE 

Three models were used during t h i s  invest igat ion,  a l l  having an approxi- 
mately three-quarter  power nose followed by a 6-inch-diameter cy l ind r i ca l  sec- 
t i o n  having four wedge f i n s  which were canted a t  0.8O. 
ordinates a r e  given i n  f igure  1. Model A, shown i n  f igu re  1, w a s  65.9 inches 
long and had a f i n  planform area of 77.66 square inches. Model B w a s  derived 
from model A by shortening the model t o  61.7 inches by renoving the  cy l indr ica l  
sect ion A shown i n  f igure  1. Model C w a s  obtained from model A by reducing the  
f i n  planform area  from 77.66 t o  70.34 square inches by removing sect ion B 
( f i g .  1). 

The model nose co- 

Axial and normal forces on the model were measured with a ca l ibra ted  three-  
component bearing-type s t r a i n  gage balance mounted inside the  model a t  approxi- 
mately t h e  center  of pressure as shown i n  f igure  1. The balance w a s  then s t i n g  
mounted t o  the  tunnel  cen t r a l  support system. 
10- by 10-foot supersonic wind tunnel i s  shown i n  f igure 2. The model angle of 
a t t ack  w a s  measured d i r e c t l y  by a strain-gage pendulum-type angle-of-attack 
transducer mounted i n  the  nose of t he  model. The base and cavi ty  pressure t aps  
shown i n  f igure  1 were used t o  obtain ac tua l  base drag, which w a s  subtracted 
from the  balance drag. 

A photograph of model B i n  t he  
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The models were t e s t e d  through Mach number ranges of 1.79 t o  2.08 i n  the  
8- by 6-foot supersonic wind tunnel  and 2.0 to 3.47 i n  t h e  10- by 10-foot 
supersonic wind tunnel  with angles of a t t ack  varying from -3.0° t o  10.0'. 
Model t e s t  parameters are shown i n  t a b l e  I and tunnel  conditions i n  t ab le  11. 

RESULTS AND DISCUSSION 

Experimental Results 

Typical curves of normal-force and pitching-moment coe f f i c i en t s  p lo t ted  
aga ins t  angle of a t t ack  f o r  a l l  tests a re  presented i n  f igu re  3. It can be seen 
from f igu re  3 t h a t  CN and CM a re  not zero a t  zero measured angle of a t tack .  
I n  t h e  case of the  da ta  obtained i n  t h e  10- by 10-foot supersonic wind tunnel  
( f i g s .  3(a), ( c ) ,  ( a ) ,  and ( e ) )  t h e  e r ro r s  i n  t h e  data  could be a t t r i b u t e d  t o  
inaccuracies i n  the  measured angle of a t t ack  combined with f l o w  angularity.  I n  
the  case of t he  data  obtained i n  t h e  8- by 6-foot supersonic wind tunnel  t he  
consistency of e r r o r  suggests e i t h e r  a flow angular i ty  e f f e c t  or a d i r e c t  e f f e c t  
on the  balance normal-force l i n k  produced by e r r o r s  i n  t h e  f i n  cant angle. 

- 
The C N ~  and % data  used t o  prepare C N ~  and Xcp/d curves were ob- 

ta ined  by f i t t i n g  a s t r a i g h t  l i n e  by the  method of l e a s t  squares through the  
data  of f i gu re  3 between angles of a t t ack  of - 3 O  and 4'. 

By d.efinit ion,  t h e  center  of pressure measured i n  ca l ibe r s  f rom s t a t i o n  0 
i s  

This equation, however, becomes indeterminate a t  zero angle of a t t ack  because i n  
theory CM and CN a re  zero. Also, t h e  percentage e r r o r s  i n  measured CN and 
CM increase near zero angle of a t tack .  Therefore, t h e  center  of pressure a t  
zero angle of a t t ack  i s  more accura te ly  obtained by d i f f e r e n t i a t i n g  equation (1) 
with respect  t o  a and using the  slopes of the CJJ and CM curves t o  obtain 

The experimental center  of pressure calculated by equation ( 2 )  and the  normal- 
force  coef f ic ien t  slope are shown i n  f igure  4. 

The axial-force coe f f i c i en t s  a t  zero measured angle of a t t ack  a re  p lo t ted  
aga ins t  Mach number i n  f igu re  5. The axial-force coe f f i c i en t s  have been ad- 
jus ted  t o  a condition of free-stream s t a t i c  pressure at  the  base of the  model 
and therefore  represent  power-on axial-force coe f f i c i en t s ,  assuming there  is  a 
j e t  i s su ing  from t h e  e n t i r e  base of t he  model. As  expected, t h e  axial-force 
coe f f i c i en t s  of models A and B were about t h e  same s ince t h e  only difference i n  
t h e  models w a s  t he  cy l ind r i ca l  length and model B would have only s l i g h t l y  l e s s  
sk in - f r i c t ion  drag. The axial-force coef f ic ien ts  of model C were s ign i f i can t ly  
less than t h e  axial-force coe f f i c i en t s  of models A and B because of the  smaller 
f i n  area.  
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Comparison of Theoretical  and Experimental 

S t a t i c  S t a b i l i t y  Character is t ics  

The p l o t s  of normal-force coef f ic ien t  and center of pressure against  Mach 
number f o r  the  wing-body combination were calculated by the method of re fer -  
ence 1, which i s  t h e  summation of forces and moments of the  various geometric 
shapes with interference which make up the  model configuration. The normal- 
force coef f ic ien t  slope f o r  the f i n  alone w a s  obtained by using the  experi-  
mental and t h e o r e t i c a l  data  of reference 3 and applying the wedge effect iveness  
fac tor  of reference 2 t o  the  f i n  normal-force coeff ic ient  slope t o  account f o r  
the increased l i f t  of the wedge sect ion a t  supersonic speeds. This method of 
calculat ion has been applied successful ly  a t  a Mach number of 4.65 t o  a wing- 
body combination having wedge d e l t a  f i n s  ( r e f .  4). 

A s  can be seen from f igure  4, good agreement between calculated values and 
experimental data  w a s  obtained f o r  a l l  models, 9 and -7 percent f o r  the  normal- 
force coef f ic ien t  slope and 51.5 percent of t h e  body length f o r  the  center-of- 
pressure locat ion a t  zero normal force. The - correlat ion of t h e o r e t i c a l  calcu- 
l a t i o n s  and experimental data f o r  C N ~  and X /d as s t a t e d  i n  reference 1 
i s  510 percent f o r  the  normal-force coef f ic ien t  and 5 2  percent of t h e  body 
length f o r  the  center-of-pressure locat ion a t  zero normal force. Thus, t h e  
accuracy of t h e  calculat ions of t h i s  report ,  which include t h e  wedge ef fec t ive-  
ness fac tor  of reference 2, seems t o b e  as good as t h a t  of the  calculat ions of 
reference 1; however, as previously discussed, the  method i s  r e s t r i c t e d  t o  con- 
f igurat ions having t r a i l i n g  edges t h a t  a r e  not swept back. Figure 6 shows the  
e f f e c t  of excluding the  wedge effectiveness fac tor  from the  calculations.  

CP 

CONCLUDING REMARKS 

Three one- f i f th  scale  models of the  second stage of a sounding rocket were 
t e s t e d  between Mach numbers of 1.79 and 3.47 and angles of a t tack  of -3' and 
10' i n  the  Lewis 10- by 10-foot and 8- by 6-foot supersonic wind tunnels. A l l  
models had an approximately three-quarter-power nose followed by a cy l indr ica l  
section having four  f i n s  of t rapezoidal  planform with sweptback leading and 
t r a i l i n g  edges, s m a l l  aspect r a t i o ,  and a th ick  wedge section. The models d i f -  
fered i n  f i n  area and overa l l  model length. 

?"ne normal-force coef f ic ien t  slope and the  center of pressure were mea- 
sured f o r  each model. It w a s  found t h a t  the  estimates of these parameters, 
based on t h e  calculat ion method of reference 1 and including the  wedge ef fec-  
t iveness f a c t o r  of reference 2, were i n  good agreement with the  d a t a ,  although 
the  method of reference 1 i s  reported t o  be r e s t r i c t e d  t o  configurations having 
t r a i l i n g  edges not swept back. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 4, 1965. 
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Figure 1. - Sketch of model A. Section A removed from model A for model B, 61.7 inches long; section B removed from model B for model C, 
wi th 70.34-square-inch planform area. (A l l  dimensions in  inches.) 
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Figure 2. - Model 6 mounted in 10- by IO-foot supersonic wind tunnel. 
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(a) Model A, 0" roll; IO-by 10-foot supersonic wind (b)  Model A, 0" roll, 8- by &foot supersonic 
tunnel. wind tunnel. 

Figure 3. - Force and moment coefficients. 
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Figure 3. - Continued. 

(c) Model A; 45" roll; 10- by 10-foot supersonic wind (d) Model B; 0" roll; 10- by 10-foot supersonic wind 
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Figure 3. - Concluded. 
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Figure 4. - Comparison of test r 
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(b) Model B. (c l  Model C. 

.esults and calculated values of longitudinal static stability characteristics. 
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Figure 5. - Axial force coefficient 
as function of Mach number. 
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Figure 6. - Comparison of calculated values wi th  
wedge effect and wi thout  wedge effect for longitu- 
dinal static stability characteristics for model A. 
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